SNPs selection using support vector regression and genetic algorithms in GWAS
نویسندگان
چکیده
منابع مشابه
Regression Model Selection Using Genetic Algorithms
The selection of independent variables in a regression model is often a challenging problem. Ideally, one would like to obtain the most adequate regression model. This task can be tackled with techniques such as expert based selection, stepwise regression and stochastic search heuristics, such as genetic algorithms (GA). In this study, we investigate the performance of two GAs for regressors se...
متن کاملMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملParameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefor...
متن کاملElectricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genomics
سال: 2014
ISSN: 1471-2164
DOI: 10.1186/1471-2164-15-s7-s4